×

projective dimension meaning in English

射影维数

Examples

  1. In chapter 4 , we define the projective dimension of flat modules , use it to characterize many rings , and the relations between cotorsion modules and the projective dimension of flat modules are also given
    在第四章中,我们定义了平坦模的投射维数,用它刻划了一些环,并讨论了cotorsion模和严坦模的投射维数的关系。
  2. When i s is a squarefree strongly stable ideal , ic = i . therefore p and / have the same graded betti numbers , projective dimension and regularity . in this paper , we study the relationship of the betti numbers between ic and i . in section 1 , the concepts of combinatorial shifting and some related results are given
    ) s为无平方强稳定理想时i ~ c = i ,因而i ~ c和i的分次betti数、投射维数和正则度相同,本文主要研究i为无平方稳定理想时, i ~ c和i之间分次betti数的关系。
  3. In the second chapter , we attain this goal by another route . collecting all short exact sequence and the morphisms among them , we get a new category , call the short exact sequences category crm . we define a global dimension attached to the original ring r from the view of the short exact sequences category cr . m , named the exact projective dimension
    在第二章中我们将通过另一种方法,也就是考察所有的短正合列以及短正合列之间的态射,我们得到一个新的范畴,通过对这个范畴(我们称之为短正合列范畴c _ rm )的一些基本性质的考察,我们定义出与环r相关的同调维数,我们称它为正合投射维数。
  4. In section 3 , we show that when i is a squarefree stable ideal , shiftij ( i ) and i have the same graded betti numbers , projective dimension and regularity , then ic and i have the same graded betti numbers , projective dimension and regularity . at last we apply the results we obtained to simplicial complexes
    在第三节中证明了当i为无平方稳定理想时, shiftij ( i )与i的分次betti数、投射维数和正则度相同,从而i ~ c与i的分次betti数、投射维数和正则度相同,最后将所得结论推广到单纯复形上。

Related Words

  1. projective
  2. projective coordinates
  3. projective rejection
  4. projective transformation
  5. projective vector
  6. projective connection
  7. projective normal
  8. projective frame
  9. projective invariance
  10. projective geometry
  11. projective deformation
  12. projective differential geometry
  13. projective doll play
  14. projective drawing
PC Version

Copyright © 2018 WordTech Co.